KULEUVEN

Scalable Rule Learning in Probabilistic Knowledge Bases

Arcchit Jain	Tal Friedman	Ondřej Kuželk	a	Guy Van den Broeck	Luc De Raedt
	OOLA			UULIN	
SafeLearner			1	Problem Specification	
 Knowledge Bases (KBs) are becoming increasingly: Larger Probabilistic Incomplete 				 Given: A probabilistic KB (PDB) : D = {(tuple, probability)} A target relation : target 	
What is new?				0	
We use Lifted Infere	ence to learn probabilis	stic rules for		To Find: A set of rules H^* that it mi	nimize cross-entropy
completion of such I	arge and probabilistic	KBs		$H^* = \underset{H}{\operatorname{argmax}} \operatorname{Cross} \operatorname{Entropy}(H)$	(, E, D)
Why Rule Learning?	2			$= \arg\min_{i=1}^{n} \sum_{j \in F} (p_j \log q_j - p_j \log q_j)$	$+(1-p_i)\log(1-q_i))$
Handles probabil	istic KBs (PDBs)			$-(c_i,p_i) \leq L \leq i \leq 0 i \leq H$	
Completes KBs in	n an explainable way			where E is the set of target tuples	s in ${\mathcal D}$, and q_i is the

Why SafeLearner?

Significantly faster than ProbFOIL⁺ and scales as good as AMIE+ (Runtime under 2.5 hours on KB with 14k+ tuples)

Example

researcher	paper	р
bob	plp	0.9
carl	plp	0.6
greg	plp	0.7
ian	db	0.9
harry	db	0.8

author/2

researcher	university	р				
edwin	harvard	1.0				
fred	harvard	0.9				
alice	mit	0.6				
dave	mit	0.7				
location/2						

researcher	researcher	
alice	edwin	0.2
alice	fred	0.3
bob	carl	0.4
bob	greg	0.5
bob	harry	0.6
bob	ian	0.7
carl	greg	0.8
carl	harry	0.9
carl	ian	0.8
dave	edwin	0.7
dave	fred	0.6
edwin	fred	0.5
greg	harry	0.4
greg	ian	0.3
ian	ian	0.2

saarahar rasaaraha

target: coauthor/2

AMIE + Rules(H):

- coauthor(A, B) :- author(A, C), author(B, C).
- coauthor(A, B) :- location(A, C), location(B, C).

predicted probability of i^{th} tuple t_i .

Algorithm

- 1. Get deterministic rules (*H*) by running AMIE+ on the deteriministic part of \mathcal{D} (ignoring the probabilities associated with tuples)
- 2. To each rule in *H*, add the classical probability of $P(head = true \mid body = true)$ calculate on all target examples.
- 3. Convert *H* to a single query *Q*
- 4. Within Stochastic Gradient Descent's loop:
 - a) Randomly pick a *target* tuple $\langle t, p \rangle$ from E
 - Get symbolic expression of P(Q(t)) over \mathcal{D} using Lifted Inference Engine of *SlimShot*
 - Calculate gradient of cross-entropy loss and update rule probabilities
- 5. Remove all the rules from *H* with insignificant probabilities

Query (Q): $\exists a, b s.t. p_{h_1} \lor (p_{h_2} \land location(a, c) \land$ $location(b,c)) \lor (p_{h_3} \land author(a,d) \land author(b,d))$

Learned Rules (H^*) :

- 0.105::coauthor(A, B) :- true.
- 0.687::coauthor(A, B) :- location(A, C), location(B, C).
- 0.333::coauthor(A, B) :- author(A, C), author(B, C). \bullet

Key features

- Uses Lifted Inference in rule learning, thereby avoiding grounding for knowledge compilation
- Uses **memoization** to store the canonical structures of all the queries with their probability expressions
- Breaks larger queries into independent subqueries for better performance

Source code and full paper available at:

https://github.com/arcchitjain/SafeLearner/tree/AKBC19

Research Foundation Flanders Opening new horizons